
A Security RISC: Microarchitectural Attacks on Hardware RISC-V CPUs

Lukas Gerlach, Daniel Weber, Ruiyi Zhang, Michael Schwarz
CISPA Helmholtz Center for Information Security

Abstract—Microarchitectural attacks threaten the security of
computer systems even in the absence of software vulnerabil-
ities. Such attacks are well explored on x86 and ARM CPUs,
with a wide range of proposed but not-yet deployed hardware
countermeasures. With the standardization of the RISC-V
instruction set architecture and the announcement of support
for the architecture by major processor vendors, RISC-V
CPUs are on the verge of becoming ubiquitous. However, the
microarchitectural attack surface of the first commercially-
available RISC-V hardware CPUs still needs to be explored.

This paper analyzes the two commercially-available off-the-
shelf 64-bit RISC-V (hardware) CPUs used in most RISC-V
systems running a full-fledged commodity Linux system. We
evaluate the microarchitectural attack surface and introduce
3 new microarchitectural attack techniques: Cache+Time, a
novel cache-line-granular cache attack without shared memory,
Flush+Fault exploiting the Harvard cache architecture for
Flush+Reload, and CycleDrift exploiting unprivileged access to
instruction-retirement information. We also show that many
known attacks apply to these RISC-V CPUs, mainly due
to non-existing hardware countermeasures and instruction-set
subtleties that do not consider the microarchitectural attack
surface. We demonstrate our attacks in 6 case studies, includ-
ing the first RISC-V-specific microarchitectural KASLR break
and a CycleDrift-based method for detecting kernel activity.
Based on our analysis, we stress the need to consider the
microarchitectural attack surface during every step of a CPU
design, including custom ISA extensions.

1. Introduction

Microarchitectural attacks have been a threat to system
security for multiple years. In recent years, a multitude of
side channels have been discovered on x86 [27], [86] and
ARM [59], [31]. These side channels have been used to
attack cryptographic implementations [64] or spy on user
behavior [67]. Still, traditional side-channel attacks, such as
cache attacks [102] have often been ignored in CPU designs.
Thus, developers must ensure that the software is resistant
to side channels [46]. While side-channel-resistant code is
common for cryptographic algorithms, it is often infeasible
to protect general software.

A large body of mitigation proposals ranges from surgi-
cal changes, which, e.g., prevent the unprivileged use of
specific instructions [102], to complete redesigns of mi-
croarchitectural elements such as caches [99], [74], [89].
Although such mitigations cannot prevent leakage for all

applications, they at least decrease the leakage rate or in-
crease the complexity of potential attacks. Moreover, several
of these proposals come with minimal or no performance
overhead when implemented in hardware [41], [71], [99].
CPU, OS, and browser vendors gradually adopt such ap-
proaches, e.g., by preventing unprivileged access to high-
resolution timers [94] and performance counters, removing
such functionality entirely from the hardware [39], or ensur-
ing that instructions do not have operand-specific execution
times [47]. However, drastic changes to the instruction set
architecture are unlikely for backward compatibility.

In 2010, the RISC-V instruction set architecture was
announced. Due to its open-source license and flexibility,
RISC-V cores have found adaptation outside the academic
field. With the freezing of the user- and kernel-space ISA in
2019 [7], companies started producing publicly sold RISC-V
cores. In addition to RISC-V CPUs for embedded systems
and IoT, RISC-V-based mobile phones [85] and laptops have
been announced [100]. The collaboration between academia
and industry, a CPU designed from scratch, and the freedom
to modify the microarchitecture in vendor-specific ways
pose an opportunity to mitigate known microarchitectural
attacks. Especially for mitigations with next to no overhead,
RISC-V CPUs could become a more secure alternative to
older ISAs, such as x86 and ARM.

In this paper, we ask the following research question:
Does the microarchitectural attack surface on COTS

RISC-V CPUs differ from x86 and ARM CPUs, and does
this affect possible microarchitectural attacks and defenses?

To answer this question, we analyze the microarchi-
tectural attack surface on the SiFive U74 [84], and the
XuanTie C906 [88] announced in 2019 and 2020, respec-
tively. Both CPUs are among the first mass-produced 64-
bit RISC-V CPUs. These CPUs have been available for end
users since 2021 and are still the most recent RISC-V CPUs
available on the market. They are explicitly marketed for
consumer devices since they run a full-fledged multi-user
Linux distribution with a graphical user interface. While
several RISC-V boards are available, these CPU cores and
their derivatives are used in most boards running Linux,
making them highly representative of the currently available
RISC-V CPUs. In contrast to previous microarchitectural
attacks on RISC-V [29], [4], we focus on readily-available
CPUs running Linux in a default configuration, not on a
simulated or synthesized core. Ahmadi et al. [4] introduces
software side-channel attacks on RISC-V processors and
evaluates Prime+Probe on an FPGA board. Our work, how-
ever, performs a systematic evaluation of the microarchi-

tectural attack surface and finds novel attacks specific to
RISC-V CPUs. In addition, we focus on commercially-
available hardware RISC-V CPUs and show that custom
vendor extensions add additional attack surface.

Based on our analysis of the microarchitectural attack
surface, we present 3 new microarchitectural attack tech-
niques on RISC-V CPUs: Cache+Time, Flush+Fault, and
CycleDrift. Cache+Time is a new cache side-channel attack
that exploits speculative instruction prefetching of exist-
ing RISC-V CPUs in combination with the standardized
fence.i instruction that flushes the instruction cache.
Cache+Time is the counterpart to Evict+Time [69], but with
cache-line granularity. Hence, Cache+Time is the first cache-
line-granular cache attack without shared memory. Flush+
Fault is a Flush+Reload variant on Harvard-style instruction
caches, i.e., instruction caches that are fully separated from
data caches, used on these RISC-V CPUs. While, Flush+
Reload on x86 and ARMv8 exploits that unified instruc-
tion and data caches exist and accessing instructions via a
memory load directly reveals their cache state. We avoid
the dependency on such a unified cache for measuring the
reload by abusing simple code gadgets or misaligned code
in the victim. With Flush+Fault, an attacker times a jump
into the victim code that either returns or leads to a fault,
providing the same information and granularity as Flush+
Reload on x86. Due to the stricter alignment requirements
and fewer memory operands on RISC-V than on x86, this
variant can be mounted reliably. CycleDrift allows attackers
to infer side-channel information about code executed in
different security domains, e.g., the kernel or other applica-
tions. RISC-V provides the number of retired instructions
and the number of CPU cycles for the entire CPU core to
unprivileged attackers. Hence, by looking at the differences
between cycles, instructions, and wall time, CycleDrift pro-
vides insights into (inaccessible) executed code, even across
security domains.

In addition to introducing these new attacks, we compare
them with microarchitectural attacks on platforms such as
x86 and ARM. We demonstrate well-known cache attacks
that rely only on timing measurements and memory ac-
cesses, such as Prime+Probe [70] and Evict+Reload [36]. In
contrast to previous attacks on x86 [63], [34] and ARM [59],
[39], we achieve success rates of up to 100 %, due to the
different cache architectures of the C906 and U74. Due
to the deterministic replacement policy on the C906, an
attacker can even improve Prime+Probe to determine the
number of victim accesses to the monitored cache set. Based
on the non-standard cache-flush instruction dcache.civa
present on the C906, we also demonstrate the first Flush+
Reload [102] attack on a commercial-of-the-shelf (COTS)
hardware RISC-V CPU, and a variant of the Flush+Flush
attack [35], [91], both with a success rate of 100 %, i.e.,
a single measurement is sufficient to correctly identify
whether a cache line is cached.

To demonstrate the real-world impact of our attacks,
we present 6 case studies. We first demonstrate Flush+
Fault on the square-and-multiply code found in the RSA
implementation of MbedTLS 1.3.10, which is commonly

used to demonstrate side-channel attacks [43], [55], [26].
We show the first microarchitectural KASLR breaks using
two different techniques on RISC-V CPUs. One exploiting
the RISC-V-specific rdinstret instruction on the U74,
and one exploiting timing similar to KASLR breaks on Intel
and AMD [33], [57]. Both KASLR breaks achieve a success
rate of 100 % in less than 800 ms, which is comparable to
microarchitectural KASLR breaks on x86 [12]. In addition
to breaking KASLR, the retired-instruction counter used
in CycleDrift circumvents the Zigzagger branch-shadowing
mitigation [55], and acts as an oracle whether an inacces-
sible file exists inside a write-only (drop-box) folder. Simi-
larly, we use CycleDrift to detect asynchronous code execu-
tion in the kernel, such as interrupt handlers. Previous work
showed that detecting these interrupts allows spying on user
input [67], [18], [58] or fingerprinting websites [58]. Finally,
we mount Evict+Reload, Flush+Reload, and Prime+Probe
on the AES implementation of OpenSSL 1.0.1e, another
common target for demonstrating side-channel attacks [9],
[69], [35], [60], [11]. We achieve close to 100 % accuracies
for all of these attacks.

For all discussed attacks, hardware-mitigation proposals
exist [99], [74], [89], [75], [96], [17], [37], [41]. However,
all of our attacks—both new and existing—are successful on
both CPUs, indicating that there are no integrated hardware
mitigations. Additionally, due to specific design and imple-
mentation decisions, our proof-of-concept implementations
on the RISC-V CPUs are more reliable than on x86 and
ARM CPUs. Even more concerning is that non-standard
instructions have been added to the CPUs, fostering such
attacks. Our findings support the hypothesis that most miti-
gations proposed in recent work are beyond what hardware
manufacturers are willing to implement. We hope that our
insights into the attack surface of early models of RISC-V
COTS CPUs lead to more secure CPUs in the future.

Contributions. The main contributions of this paper are:
1) We evaluate the microarchitectural attack surface on the

C906 and U74 RISC-V cores, identifying new attack
techniques and confirming the applicability of attacks
known from x86 and ARM.

2) We introduce 3 attack techniques on RISC-V: Cache+
Time, Flush+Fault, and CycleDrift, enabling powerful
cache attacks and instruction-level side channels.

3) We show the first RISC-V microarchitectural KASLR
break, and demonstrate the implications of unprivileged
access to retired instructions across security domains.

4) We reproduce known cache attacks, such as Flush+
Reload, Prime+Probe, Evict+Reload, to enable the com-
parison with well-studied ISAs such as x86 and ARM.
We show their effectiveness on RISC-V by extracting
keys from vulnerable AES and RSA implementations
with nearly 100 % accuracy.
Responsible Disclosure. We disclosed our findings to

T-head and SiFive. T-head is currently looking into ways
of disabling unprivileged access to interfaces we use in our
paper. SiFive is analyzing the results presented in our paper.
Our experiments and case studies are open source:
https://github.com/cispa/Security-RISC

2

2. Background

2.1. RISC-V

RISC-V is a free and open instruction set architec-
ture (ISA) maintained by the RISC-V foundation. The
reduced size of the ISA and the load-store architecture
simplifies CPU design compared to CISC architectures such
as x86. RISC-V provides 32, 64, and 128-bit addressing
modes, making it adaptable for use cases from IoT to high-
performance computing. The ISA consists of an unprivi-
leged [97] and a privileged part [98]. RISC-V supports up
to 4 privilege levels, machine, hypervisor, supervisor, and
user mode, with the hypervisor mode still being finalized.
The operating system typically runs in supervisor mode, and
applications run in user mode. Major compilers, such as
GCC and LLVM, and operating systems, such as Linux,
support the RISC-V ISA. Additionally, several open-source
cores are available [6], [14]. These cores can be used as soft
cores synthesized on FPGAs for development and research
purposes. Moreover, CPUs in silicon, such as the SiFive
U74 [83] or the XuanTie C906 [88], are already available.
Single-board computers, such as the Sipeed Nezha or Sipeed
Lichee RV, are equipped with a C906 CPU, run a full-
fledged Debian system, and can be bought off the shelf.

2.2. CPU Microarchitecture

The CPU microarchitecture describes the specific hard-
ware implementation of an ISA. Generally, events in the
microarchitecture are invisible to the programmer, as they
are not defined at an ISA level and are only present for,
e.g., optimization purposes. In the following, we introduce
microarchitectural elements relevant to this paper, including
the cache, address translation, and prediction subsystems.

Cache. The cache is a memory buffer located between
the main memory and the CPU. A cache speeds up memory
access by keeping recently used copies of data closer to the
CPU. Typically, caches are split into instruction (I-Cache)
and data caches (D-Cache). Caches are organized into cache
lines indexed by virtual or physical memory addresses. Most
caches use cache sets that group multiple cache lines.

Address Translation. The CPU performs page-table
walks to translate virtual to physical addresses. The results
of the address translation are stored in a separate cache,
the Translation Lookaside Buffer (TLB). TLBs are typically
organized in multiple levels.

Branch Prediction. Branch predictors are used to
speed up instruction fetches. When a branch instruction
is executed, significant overhead occurs due to stalling,
as the branch direction or target is unknown and cannot
be fetched until the instruction is resolved. To mitigate
branch overhead, the CPU guesses whether the branch is
taken based on the history of recently taken and not taken
branches. In addition, the destination of the branch can be
predicted.

2.3. Microarchitectural Attacks

Microarchitectural attacks exploit effects introduced by
the microarchitecture. Microarchitectural side-channel at-
tacks leak data from the microarchitecture using a side
channel exploited in software. The attacks relevant to this
paper can be classified by the exploited microarchitectural
element: the cache, address translation, or branch predictors.

Cache Attacks. Caching introduces the potential for
side channels, as there is a timing difference depending on
whether values are cached. Cache attacks can be classified
by their methods to control and leak the cache state.

Flush+Reload [102] uses cache maintenance instructions
to remove values in shared memory from the cache. An
attacker can infer if the location has been accessed by per-
forming a timed load on the shared memory. Flush+Reload
is used for attacks on cryptographic implementations [64]
and to spy on user behavior [67], and as a building block
for transient-execution attacks [13]. Flush+Flush [35], is a
variant that exploits the flush instruction’s timing behavior.

An alternative, if cache maintenance instructions are
unavailable [59], [39], is Evict+Reload [36]. Instead of
removing a cache line by flushing, the target cache line is re-
moved by repeatedly accessing addresses in the same cache
set. Eviction sets can be built efficiently using the cache-set
mapping [59], [34], or by relying on side channels [93].

Prime+Probe [70] enables attacking victim processes
that do not share memory with the attacker. Similarly to
Evict+Reload, a cache set is evicted. In addition, the attacker
measures the access time on the evicted cache set to infer
whether the monitored location was accessed. As an attacker
needs to know cache sets of interest to probe, Prime+
Probe-based attacks include a phase in which the cache is
monitored for attackable event-dependent accesses [63].

Attacks on the Memory Subsystem. As the TLB
acts as a cache for address translation, it can also be
used for microarchitectural attacks. The timing difference of
cached and uncached addresses in the TLB has been used
to attack cryptographic implementations [30], or to break
KASLR [42], [33], [76], [57]. Contrary to cache attacks,
hardware mitigations for the TLB are not well explored.

Prediction-based Attacks. Branch predictors induce
a timing difference depending on whether they predict a
branch correctly or incorrectly. If the addresses of the
victim and attacker processes map to the same entry in a
shared branch predictor, they influence each other. Branch-
prediction side channels [3] abuse secret-dependent delays
by mistraining a branch predictor. Such attacks allow, e.g.,
to extract keys from the OpenSSL RSA implementation [2].
Lee et al. [55] introduced a similar approach called branch
shadowing. By observing the mispredictions in the attacker
process, the direction of victim branches can be inferred.

Transient-execution Attacks. Transient execution at-
tacks rely on the execution of the predicted instruction
stream. Gonzales et al. [29] simulated Spectre attacks on
the open-source BOOM core in the FireSim simulator. Sim-
ilarly, Fuchs et al. [25] develop a test suite for Spectre attack
on RISC-V. The currently available RISC-V processors do

3

L1 Instruction Cache

Decode / Register Read
Integer Physical Register File

Branch Predictor
(BPU)

L
1

D
ata

C
ache

DIV

Branch

Branch

Branch

FP Register
File

Floating
Point
Pipe

Pipeline B Pipeline A

Cache+Time (IV-A)

Flush+Fault (IV-B)

C
ycleD

rift
(IV-C

)

Figure 1: Block diagram of the U74 core. The diagram also
contains our attack primitives next to the microarchitectural
elements they exploit and a reference to the section where
they are described in more detail.

not support speculative execution and are thus not vulnerable
to classic transient execution attacks.

3. Systematic Side-Channel Analysis

This section systematically analyzes and categorizes the
microarchitectural side channels on the C906 and U74
CPUs. Unlike previous work [65], [4], we cover a wide
range of microarchitectural elements. Figure 1 shows an
overview of the more-complex U74 core with its docu-
mented microarchitectural elements. The figure also contains
references to the sections where our new attack primitives
based on the analysis of this section are described in detail.
Moreover, we only use COTS hardware and software with
the default configuration. Therefore, our results apply to real
systems found in the wild. While we use the C906 and U74
in our experimental setup, these CPUs already cover most
64-bit Linux-capable RISC-V devices [16] available at the
time of this research. As RISC-V CPUs are expected to
gain popularity, this underlines the necessity of analyzing
the microarchitectural attack surface.

Requirements. Mounting microarchitectural attacks on
RISC-V CPUs has the following requirements, which we
systematically explore in a bottom-up manner.
R1 High-resolution Timer. Most microarchitectural at-

tacks require a high-resolution timer. Although previous
work covers several of these primitives for x86 [102], [79],
[77] and ARM [59], [39], there is no analysis on RISC-V.
R2 Cache Maintenance. In contrast to x86 and ARM,

RISC-V does not specify instructions for cache maintenance.
Hence, flush-based primitives, such as Flush+Reload, are
only possible with unprivileged custom vendor extensions.
Moreover, there is no analysis of cache structures and
replacement strategies on RISC-V CPUs. However, this
knowledge is required to build effective eviction sets for
eviction-based attacks, such as Prime+Probe. In addition,
we analyze the address translation cache (TLB), which is
required for attacks such as TLBleed [30].
R3 Novel Performance Optimizations and Interfaces.

While most RISC-V cores use well-known performance

optimizations, such as caches and TLBs, there are also
optimizations not used in this form on x86 or ARM, such
as speculative branch-target prefetching. As these optimiza-
tions can introduce new attack vectors, they must also
be analyzed. In addition, RISC-V can expose interfaces
to unprivileged users unavailable on other CPU architec-
tures. Moreover, these interfaces are only supported in some
widely-used compilers.

Experimental Setup. We evaluate two different pro-
cessors, the T-head C906 and SiFive U74. To evaluate
the C906, we use two Allwinner D1 boards, the Sipeed
Lichee RV and the Sipeed Nezha. Both boards use the
C906 RISC-V CPU and only differ in their amount of
main memory (512 MB and 1 GB, respectively). The C906
provides the rv64imafdcv instruction set extensions, i.e.,
it supports the base RISC-V instruction set, including the
extensions for a general-purpose ISA, as well as compressed
and vector instructions. Both boards run Debian 12 with
kernel 5.14.0-rc4-nezha (Nezha) and 5.4.61 (Lichee RV).
To evaluate the U74, we use the StarFive VisionFive board.
The U74 implements the rv64gc instruction set extension
and contains 8 GB of main memory. The VisionFive board
runs Ubuntu 22.04.1 LTS with the 5.17.5-visionfive kernel.
All proofs of concept use unprivileged code execution on
the unmodified operating system.

3.1. Systematic Evaluation of Timers

In this section, we tackle requirement R1 and evaluate
timing primitives available to unprivileged attackers. Table 3
(Appendix A) summarizes our results. We distinguish be-
tween hardware timers directly accessible using assembly
instructions and software timers that involve the OS.

Hardware Timers. The RISC-V ISA provides two
different performance counters for measuring time that can
be accessed via the pseudo instructions rdcycle and
rdtime [97]. Both counters are accessible to unprivileged
users. The RISC-V ISA manual explicitly states: We man-
date these basic counters be provided in all implementa-
tions as they are essential for basic performance analysis,
adaptive and dynamic optimization, and to allow an appli-
cation to work with real-time streams. We verify that these
counters are available on the C906 and U74 and can be
used to measure small timing differences. The rdcycle
counter has a resolution of 1 cycle on both tested CPUs.
The rdtime counter provides timing measurements with
a lower resolution of 45 ns. Still, the counter increments in
steps of 1. For both counters, it is not relevant if they are
read via the pseudo instructions or directly using the csrr
with the respective counter.

In addition to these explicit timing-related instructions,
the RISC-V ISA provides an unprivileged performance
counter that tracks the number of retired instructions. With
that, an attacker can implicitly time program execution. In
the best case, where the attacker knows the code and every
instruction takes one CPU cycle, this method results in a
timer with a 3 ns resolution on the C906. On the U74,
this method achieves a higher resolution of 1 ns due to

4

the increased throughput of the CPU pipeline. This counter
updates after every retired instruction. It can be read using
the rdinstret or the csrr instruction.

Software Timers. In addition to the hardware counters
defined in the RISC-V ISA, it is also possible to rely on
OS-provided timers. POSIX defines the clock_gettime
system call, which returns a high-resolution timestamp. This
system call has also been used for microarchitectural attacks
in previous works [59]. It is also available on Debian,
providing a time stamp with a resolution of 1 ns as well. As
a fallback solution, it is possible to implement a counting
thread as used in related work [59], [77]. A counting thread
can become necessary if the microarchitectural attack is not
implemented in native code but in a restricted environment
such as a browser [79], [30]. Due to the added loop over-
head, the resolution of the timer is lower and dependent on
the CPU performance. On the C906, we achieve a resolution
of 2 ns. On the U74, we achieve a 1 ns resolution. While the
resolution is sufficient in both cases to mount microarchi-
tectural attacks, a counting thread has the disadvantage of
requiring a dedicated core to execute on.

3.2. Cache Maintenance

In this section, we tackle requirement R2 for the data
and instruction cache and systematically analyze the cache
design and possible cache maintenance primitives.

Cache Design. The C906 and U74 CPUs have dedicated
first-level caches for data (D-Cache) and instructions (I-
Cache), which are both 32 kB in size. Both the I-Cache
and the D-Cache have 64 B cache lines. The I-Cache is a
2-way set-associative cache with 256 cache sets. The D-
Cache is a 4-way set-associative cache with 128 cache sets.
As on most CPUs, both caches are virtually indexed and
physically tagged [87]. The U74 adds a second-level shared
data and instruction cache. The L2 cache is 128 kB in size,
has a line size of 64 B and is 8-way set associative. In
contrast to complex cache replacement policies on x86 [1]
and ARM [59], the C906 uses a deterministic first-in-first-
out (FIFO) strategy [87]. This replacement policy is used
for the D- and I-Cache. The U74 uses a PLRU replacement
policy in the L1 D-Cache and random replacement in both
the L1 I-Cache and the shared L2 cache. We verified that
a more complex stratey than tree PLRU is used by imple-
menting a perfect tree-PLRU eviction and observing that it
is insufficient to find eviction sets.

Cache-maintenance Instructions. While the RISC-V
instruction set does not specify any cache-maintenance func-
tions, vendors are free to implement such functions. The
only function in the base instruction set that can–depending
on the actual implementation–be used for cache maintenance
as a side effect is the unprivileged fence.i instruction.
The RISC-V ISA manual [97] states: A simple implementa-
tion can flush the local instruction cache and the instruction
pipeline when the FENCE.I is executed. We verify that
fence.i shows this behavior on both CPUs. Executing the
fence.i instruction flushes the entire instruction cache.

The execution time is 914 cycles and 28 cycles on the C906
and U74, respectively.

The C906 CPU also provides a set of non-standard
cache-maintenance instructions [88, §7.3.2] as shown in
Table 4. While most instructions are privileged, two relevant
instructions can be used in user space. The dcache.civa
can be used as the clflush instruction on x86. It takes a
virtual address and flushes the specified cache line from
the data cache. Likewise, the icache.iva instruction
precedes an equivalent action for the instruction cache.
Both instructions require 4 cycles to execute. All other
flush instructions flush by physical address, cache set, and
way, or the entire cache, are only available in the OS. We
exploit these unprivileged flush instructions in Section 4.2
for Flush+Fault and, for comparing to other architectures,
to reproduce known attacks in Section 4.4 and Section 5.6.

Cache Eviction. With the FIFO cache-replacement
strategy used in the C906, it is sufficient to access as many
addresses falling into the same cache set as there are cache
ways. Thus, executing code on 2 addresses mapping to the
same cache set is sufficient to evict a cache line from the I-
Cache. Similarly, accessing 4 addresses mapping to the same
cache set is sufficient to evict a cache line from the D-Cache.
The only requirement is that bits 6 to 12 for the D-Cache
and 6 to 13 for the I-Cache, are identical for addresses in the
eviction set. Evicting a cache line from the D-Cache takes
25 cycles. Due to the straightforward eviction-set generation
and deterministic replacement policy, we achieve an eviction
rate of 100 %. For the U74, the method by Gruss et al.
[34] finds an efficient eviction set for the L1 D-cache. Our
eviction set performs 168 memory accesses and takes 1671
cycles to evict a cache line with an F-Score of 0.997. We
use cache eviction to reproduce known attacks in Section 4.4
and Section 5.6 to allow comparison to other architectures.

3.3. TLB

This section analyzes the TLB design and provides
efficient TLB eviction strategies, tackling R2.

TLB Design. Both analyzed CPUs use 39-bit addresses
for virtual memory (Sv39). The C906 caches address trans-
lations in two separate 10-entry fully-associative TLBs for
data and instructions [87]. The U74 uses separate 40-entry
L1 TLBs for data and instructions and a shared 512-entry
L2 TLB. As on x86 and ARM, there is no unprivileged
instruction to flush TLB entries or the entire TLB.

TLB Eviction. Our experiments show that accessing as
many addresses on different pages as there are entries in the
first-level TLB reliably evicts the TLB. With a page size of
4 kB, an attacker only requires a 40 kB buffer to evict the
entire TLB C906 and 160 kB on the U74. The TLB eviction
takes 1396 cycles on the C906 and 866 cycles on the U74,
with an F-Score of 1. We use TLB eviction to build a side
channel in Section 4.4.

5

3.4. Branch Prediction

In this section, we tackle requirement R3 for prediction-
based optimizations in the C906 and U74. Both CPUs have
an in-order pipeline and do not support speculative or out-of-
order execution. However, they use speculative prefetching
and decoding of instructions following branches. While the
U74 allows the deactivation of speculative instruction fetch-
ing [84, §7.6], it is enabled in the provided Linux image.
Both CPUs have 3 branch predictors: a branch-direction
predictor for conditional jumps, a branch-target predictor for
jumps and calls, and a return-address predictor for function
returns. The U74 also has an indirect jump-target predictor.
Predictors are shared between user and kernel mode.

The branch history table (BHT) is used to predict con-
ditional branch instructions. The BHT on the C906 has a ca-
pacity of 16 kB and uses the gshare prediction algorithm [88,
§7.1.2] with a 14-bit global history register (GHR). The
instruction-fetch unit prefetches the predicted branch After
the branch is retired, a writeback to the predictor updates
the corresponding GHR entry. On the U74, a 3.6 KiB BHT
is used together with a proprietary prediction algorithm [84,
§3.2.7]. No CPU provides functions to flush the BHT in
user mode.

The branch jump target (BJT) buffer contains 16 entries
and predicts the target of direct jumps. On the C906, it is
fully associative [88, §7.1.3]. An entry is indexed using bits
16 to 32 of the current program counter. If a BJT entry is
available, the jump results can be immediately predicted by
adding the current program counter to the offset stored in
the BJT entry. The instruction fetch unit can then prefetch
the jump target address result without waiting for the jump
to be resolved. User and supervisor mode do not have access
to BJT maintenance functions [88, §16.1.7.3].

The return address predictor (RAP) predicts the return
address when returning from a function using a stack. The
RAP contains 4 addresses on the C906 and 6 on the U74. An
indirect-jump target predictor is used on the U74 to predict
indirect jumps. It contains 8 entries and is not manageable
from machine or user mode.

In Section 4.4, we show that the branch predictors allow
mounting known branch-prediction attacks.

3.5. Performance Counters

In this section, we tackle requirement R3, showing that
the RISC-V ISA provides unprivileged access to specific
performance counters unavailable on x86 or ARM.

The RISC-V ISA guarantees access to 3 unprivileged
performance counters. The cycle counter counts CPU
cycles and is available via the unprivileged rdcycle in-
struction or by reading the performance counter register with
csrr directly. The time counter tracks wall clock time
and map it to an internal time register. The counter can
be read with the rdtime instruction or directly from the
control register. The instret counter counts the number
of retired instructions and can be read with the rdinstret
instruction or by reading the corresponding control register

if(s) {
A();

} else {
B();

}

VICTIM <
p
r
e
f
e
t
c
h
g
a
d
g
e
t
>

fetch

ATTACKER

1 fence.i

2 mistrain +
execute

3 time

4 fast: s = 1
slow: s = 0

Figure 2: Cache+Time: An attacker flushes the I-Cache (1),
mistrains and executes a speculative prefetch gadget [13]
(2) to cache a secret-dependent code path (A()), and times
the victim’s runtime (3). Based on the runtime, the attacker
knows if the prefetched code path was executed (4).

directly. The access to all mentioned counters takes 6 cycles,
independent of whether they are read via the corresponding
pseudo instruction or the performance counter register using
the csrr instruction. While other counters exist on all
tested systems, they are not enabled in user mode per de-
fault, meaning an unprivileged attacker cannot access them.

We exploit the unprivileged performance counters in our
CycleDrift primitive (cf. Section 4.3) that we showcase in
the case studies in Section 5.2, Section 5.3, and Section 5.4.

4. Microarchitectural Attack Primitives

In this section, we introduce our new attack primitives
Cache+Time, Flush+Fault, and CycleDrift. Cache+Time is
an I-Cache attack specific to the RISC-V architecture ex-
ploiting I-cache flushing in conjunction with speculative
prefetching. Flush+Fault shows that it is possible to mount
attacks on the I-Cache in split-cache architectures as present
on the C906. CycleDrift exploits the differences between
the exposed retired instructions and cycle counters and is
specific to the RISC-V architecture. We also reproduce
and extend known microarchitectural attack primitives, such
as Prime+Probe, Flush+Reload, Evict+Reload, Flush+Flush,
and branch-prediction attacks.

4.1. Cache+Time

In this section, we introduce a new cache-attack primi-
tive, Cache+Time. Cache+Time exploits branch prediction
in combination with the possibility to flush the I-Cache
on RISC-V. Cache+Time has cache-line granularity without
requiring shared memory.

Overview. The basic idea is to turn Evict+Time [69]
around. For Evict+Time, an attacker evicts a cache line of
interest and measures if the execution time of the appli-
cation changes. If the execution time increases, the victim
uses the target cache line; otherwise, it is not. For Cache+
Time, the attacker flushes the entire instruction cache and
caches a cache line of interest. If the execution time of
the target changes due to this caching, the attacker knows
that the victim uses the cache line. Cache+Time leverages
two building blocks. First, Cache+Time exploits that on all

6

0
500

1,000
1,500
2,000

Speculatively cached Uncached

Figure 3: Cache+Time histogram of the victim execution
time on the U74. The runtime of speculatively-prefetched
code is lower compared to normal execution.

analyzed RISC-V CPUs, an unprivileged attacker can flush
the entire instruction cache (cf. Section 3.2), which is not
possible on x86 or ARM. Second, Cache+Time exploits
that the predictors on the C906 and U74 can be tricked
into fetching arbitrary cache lines from the victim address
space into the cache using a simple speculative prefetch
gadget [13], [81], [50]. Figure 2 shows an outline of Cache+
Time. In this example, the attacker wants to exploit a secret-
dependent branch instruction. For this, the attacker flushes
the instruction cache (1), and uses a speculative prefetch
gadget in the victim’s application to load a cache line of
the A function into the I-Cache (2). The attacker can then
measure the execution time of the victim (3). The victim
executes faster if the function A is called, as this function
is the only one cached. If there is a speed-up, the attacker
learns that the secret s in the branch condition is 1 (4).

Threat Model. We assume that the victim application
contains a secret-dependent execution flow. We do not re-
quire any shared memory between attacker and victim appli-
cations. The only requirement is a speculative-dereference
gadget that the victim executes. The victim can be either
a privileged or an unprivileged application. The attacker
controls an unprivileged application.

Evaluation. We evaluate the attack on an artificial
implementation of square and multiply. For the prefetch gad-
get, we rely on the branch-history table for misprediction.
Based on an attacker-induced misprediction of the branch,
the square function is either cached or not. In line with
previous work [80], the misprediction is not perfect. For our
gadget, we achieve a misprediction rate of approximately
14 % on the C906 and 100 % on the U74. The higher
misprediction rate on the U74 can be explained with the
more complex branch predictor, as discussed in Section 3.4.
Figure 3 shows the execution time of the target branch. If
the attacker does not induce misspeculation, the execution
time is always slow, as the function code is flushed from
the I-Cache. Otherwise, the execution time is faster, as seen
in the histogram’s peak on the left side.

Related Attacks. Cache+Time is related to Spectre [52]
and Evict+Time [69]. While the C906 and U74 predict the
outcome of branch instructions (cf. Section 3.4), they do
not support execution of the predicted instruction stream. In-
stead, the predicted instructions are fetched into the I-Cache.
Hence, existing Spectre-style attacks [52], [13] requiring
instruction execution during speculation are impossible. In
contrast to Evict+Time, Cache+Time achieves cache-line
granularity, as it does not require eviction to force entries
out of a cache set. Instead, the entire I-Cache is flushed, and

if(s) {
A();

} else {
B();

}

VICTIM

<
f
a
u
l
t

h
a
n
d
l
e
r
>

ATTACKER

1 fence.i

2 time

3 jump + crash

4 time

5 ∆ time

Figure 4: Crash based Flush+Fault: The attacker flushes the
entire I-Cache (1), and times (2 , 4) a jump to the victim
address containing the target cache line (3), while handling
the successive fault. Based on the timing difference (5) of
the fault handling (3) an attacker infers the cache state of
the target cache line.

2.47
2.48
2.49
2.5 ·104

50
100
150

Bit

Ti
m

e
[c

yc
le

s]

Figure 5: Comparison between the noise of the crash-based
(top) and the return-based Flush+Fault (bottom).

the targeted cache line is prefetched using the speculative
prefetch gadget. As fence.i flushes the entire I-Cache,
Cache+Time does not require shared memory. Cache+Time
is specific to RISC-V CPUs, as x86 and ARM do not allow
an unprivileged user to flush the entire I-Cache.

4.2. Flush+Fault

In this section, we introduce Flush+Fault, a variant of
Flush+Reload that can be used without unified caches.

Overview. State-of-the-art Flush+Reload attack scenar-
ios against victim code pages rely on the victim executing
the target cache line, bringing it into the CPU cache. This
relies on the assumption that the I- and D-caches are either
unified or synchronized, which is the case for most Intel
CPUs L2 and L3 caches. However, this synchronization
is not always given for the targeted RISC-V CPUs, with
some of them employing a Harvard split-cache architecture.
To overcome this challenge and enable Flush+Reload-style
attacks for code pages on these CPUs, we introduce Flush+
Fault. The main idea is to replace Flush+Reload’s data-load
step (reload) with a faulting jump into the shared victim
code or an immediate return from the victim code. We
refer to these cases as fault-based Flush+Fault and return-
based Flush+Fault, respectively. As both cases execute, and
therefore load, the victim code, their timing differs slightly
when the victim code is in the CPU’s instruction I-cache.

Figure 4 shows the steps of Flush+Fault. First, the
attacker brings the I-cache into a controlled state 1 by
flushing it using the fence.i instruction. Next, the attacker
takes a timestamp 2 and jumps to an address 3 that

7

maps to the targeted cache line in the victim. The jump
has to target an address that leads to a fault. This can
either be provoked by jumping to an invalid combination
of bytes or jumping to an instruction sequence containing
a faulting instruction still in the targetted cache line. For
example, the attacker can zero the a0 register and jump to
the instruction lb t1, 0(a0), thus inducing a fault. The
attacker handles the fault 3 , e.g., by registering a signal
handler and takes the second timestamp 4 . By comparing
the delta between the two timing measurements 5 , an
attacker can deduce whether code in the target cache line
was executed. This is because code already cached in the
I-cache loads slightly faster and thus also induce the fault
slightly faster, leading to a lower timestamp delta. After
each measurement, the attacker issues multiple calls from
the same jump instruction to a dummy location outside the
target cache line. This ensures that the branch predictor
never predicts and thus prefetches the target cache line. This
is important as such a prefetch would cache the target cache
line and effectively remove our information leakage.

As crash handling induces overhead, we also present
an optimized return-based technique inspired by return-
oriented programming [82]. If the target cache line contains
a ret instruction, the attacker can jump directly to it in
3 . This leads to an immediate return of the call without

any further side effects. Return-based Flush+Fault results
in low-overhead measurements but relies on a (potentially
unaligned) ret instruction in the target cache line. Both the
U74 and the C906 support the compressed (C) instruction-
set extension. Hence, they allow unaligned instructions,
increasing the number of potential ret instructions.

Evaluation. Figure 5 visualizes the difference in noise
between the two discussed techniques when leaking a signal
of alternating ones and zeroes. The plotted values are accu-
mulated using the median of 1000 measurements executed
on the C906. The context switch performed by the signal
handling in the crash-based technique results in higher tim-
ing variations leading to a noisier signal. Nevertheless, even
if it performs worse than the optimized techniques, the fault-
based Flush+Fault is still highly precise when measurements
are accumulated. We achieve a recall and precision of 1.0
over 100 different bits using the fault-based Flush+Fault
technique. This also results in an F-score of 1.

4.3. CycleDrift

In this section, we introduce CycleDrift, an attack prim-
itive exploiting the unprivileged access to the number of
retired instructions.

Overview. In contrast to x86 and ARM, RISC-V
provides an unprivileged counter for retired instructions,
rdinstret. This introduces a side channel, as instructions
taking more than one cycle lead to differences between
retired instructions and CPU cycles. An attacker that reads
both the rdcycle and the rdinstret counter can deter-
mine how many such instructions have been retired. These
instructions are defined per CPU core and include statistics
about instructions from different applications and different

security domains, such as the operating system. Hence, this
side channel can spy on kernel code (cf. Section 5.5). In
addition, we verify that even machine mode code is suscepti-
ble to CycleDrift. We choose a simple environment call into
the platform-specific firmware running in machine mode to
get the vendor ID (SBI_EXT_BASE_GET_MVENDORID)
and a more complex one to output a character to the
console (SBI_EXT_0_1_CONSOLE_PUTCHAR). We see a
clear timing difference when executing the two instructions
to get the ID and outputting a character. On the C906,
we measure 613 and 85 109 cycles, respectively (average
over 1000 measurements). On the U74, we measure 963
and 85 507 cycles, respectively. Moreover, we also see a
difference in the retired instructions. On the C906, 265 and
4505 instructions retire, respectively (again the average over
1000 measurements). On the U74, 267 and 7050 instructions
retire, respectively.

As the RISC-V ISA does not specify the latency of
instructions, we benchmark the RISC-V instruction set on
the C906 and the U76. Our results show that, among oth-
ers, instructions using the FPU consume more than one
cycle while still retiring as a single instruction. Table 5
(Appendix A) shows the instruction execution timings on
both the U74 and C906 processors.

Threat Model. As both the rdcycle and
rdinstret are unprivileged and do not distinguish be-
tween user and kernel space, CycleDrift enables an un-
privileged attacker to target unprivileged or privileged ap-
plications. We assume the targeted code contains secret-
dependent control flow that can be distinguished by the ratio
of retired instructions and spent CPU cycles.

Evaluation. We evaluate CycleDrift on a padded
square-and-multiply implementation. The implementation in
Listing 1 (Appendix A) hides the cycle difference between
the different branches by adding nop instructions. When
observing the number of retired instructions, an attacker
can distinguish which branch was taken as the multiplication
retires as a single instruction, whereas the 3 nop instructions
used to pad the else branch retires as 3 instructions. The
cycles stay equal, with 18 and 14 instructions per iteration
on the C906 and U74, respectively. However, the retired
instructions differ on both CPUs, by 2 and 3 on the U74 and
C906, respectively. Hence, the user-accessible rdinstret
instruction opens up additional attack surfaces and allows an
attacker to bypass mitigations intended to conceal the timing
behavior of cryptographic implementations.

4.4. Known Attacks and New Variants

This section evaluates the applicability of state-of-the-
art cache, TLB, and branch-predictor attacks on the U74
and C906. All measurements use a sample size of n =
1 000 000 and evaluate the F-score and temporal resolution.
Appendix A contains the histograms for the attacks.

Flush+Reload [102]. Flush+Reload allows an attacker
to monitor accesses to a D-Cache or I-Cache line resid-
ing in shared memory. The attack requires a precise timer
and an instruction that flushes a cache line. Both of these

8

0 100 200 300 400 500 600
0

500

1,000
1,500

Time [cycles]

O
bs

er
va

tio
ns Hit 1 way 2 ways 3 ways 4 ways

Figure 6: Prime+Count histogram on the C906. The cache
hit (densely-dotted blue) is for reference. The other timings
are for an increasing number of evicted cache ways: 1
(dotted purple), (dash-dotted orange), 3 (dashed green), and
4 ways (solid red). Due to the perfect eviction and reverse-
probe step, these cases can be clearly distinguished.

requirements are present on the C906 chip. On the C906,
an attacker can use the unprivileged dcache.civa and
icache.iva instructions to flush a virtual address from
the D or I-Cache. Alternatively, the fence.i instruction
can be used to flush the entire I-Cache on both the C906 and
U74, which we refer to as Fence+Reload. As on x86 [102]
and ARM [59], Flush+Reload requires shared memory be-
tween the attacker and victim. All timing primitives from
Section 3.1 are usable. An attacker achieves cache-line
granularity with a temporal resolution of 339 ns on the C906
with Flush+Reload and 276 ns on the C906, and 120 ns
on the U74 with Fence+Reload. Flush+Reload and Fence+
Reload have a perfect F-score of 1.

Flush+Flush [35]. With Flush+Flush, we can see the
timing difference between flushing a modified and a non-
modified cache line, as shown on x86 by Van Bulck et al.
[91]. While both the dcache.civa and icache.iva
instructions induce timing differences depending on the
cache state, this is not the case for the fence.i instruction,
making Flush+Flush exclusive to the C906. Flush+Flush has
a perfect F-score of 1, with a temporal resolution of 334 ns.
In contrast to x86 [35], Flush+Flush cannot distinguish a
cache hit from a cache miss for a non-modified cache line.

Evict+Reload [36]. The advantage of Evict+Reload
over Flush+Reload is that no unprivileged flush instruction
is required, as the target address is evicted, making Evict+
Reload viable on both the C906 and U74. For eviction,
we rely on the eviction primitive from Section 3.2. As
the eviction only requires knowledge of virtual addresses,
building the eviction set is simple since the virtual address
of the target cache line is known. Evict+Reload has a perfect
F-score of 1 and a resolution of 397 ns on the C906, and an
F-score of 0.997 with a resolution of 1355 ns on the U74.

Prime+Probe [70]. For Prime+Probe, we use the same
eviction set for both the prime and the probe step. On the
C906, this results in a perfect F-score of 1 and a temporal
resolution of 392 ns. Due to the PLRU replacement strategy,
Prime+Probe on the U74 has an F-score of 0.999 and a
temporal resolution of 584 ns.

Prime+Count. Due to the deterministic replacement
policy of the cache on the C906, a cleverly-chosen prime and
probe step allows counting the number of victim accesses
in the probe set. We refer to this variant as Prime+Count.

Prime+Count provides more information than the binary
classification of whether a victim accessed an address falling
into the target cache set. As the replacement policy is
known to be least-recently used, an attacker can access the
eviction set in reverse order for the probe step. By doing
this, the attacker learns how many addresses of the prime
set have been evicted by the victim. Given a prime set
P = {p0, p1, p2, p3}. The victim accesses have the newest
timestamps and evict the addresses first accessed in the
prime set, e.g., the first victim access evicts p0, the fourth
victim access evicts p3. By reversing the access order in
the probe step, the attacker maximizes the number of cache
hits on the prime set, ensuring that the probe step evicts the
victim data last. For a single victim access, probing in the
order p3, p2, p1, p0 only results in a cache miss for the last
access, i.e., to p0. In contrast, probing in the same order as
the prime step results in 4 cache misses.

Figure 6 shows the execution time of this reverse-probe
step. The number of victim accesses that fall into the tar-
geted cache set is distinguishable. This property can be used
for a covert channel, as a single probe step can distinguish 5
different symbols (0 to 4 evicted ways) for the 4-way cache
of the C906. The spatial resolution is one cache set, i.e.,
256 B, and the temporal resolution is 392 ns. This attack is
not possible on the U74 but transfers to all CPUs that use
a fully-deterministic last-recently-used replacement policy.

TLB Eviction. An attacker that can evict the TLB can
spy on address translations performed by a victim process.
We use the eviction strategy found during our systematic
analysis in Section 3.3 to evict entries from the TLB. We
achieve perfect eviction with an F-score of 1.

Simple Branch Prediction Analysis. As described by
Acıiçmez et al. [2], an attacker can influence the branch
predictor in the attacker application to affect the predictions
of the victim, introducing timing differences. We verify
that this attack is also possible on the analyzed CPUs. In
the attacker application, we train a branch to consistently
predict the same direction, e.g., taken. As a result, a secret-
dependent branch in the victim that matches the trained
direction is faster. By measuring the execution time of either
the victim or the branches in the attacker, an attacker can
infer whether the trained branch direction matches the one
of the victim’s execution. We extract the victim branch
direction with an F-score of 0.94 and 1 over 1 000 000
samples on the C906 and U74, respectively.

Branch Shadowing. The BHT can also be used in
branch-shadowing attacks [21], leaking the secret if the
victim program executes a secret-dependent branch. After
the execution of a secret-dependent branch in the victim
program, the BHT contains whether the victim branch was
taken or not. The attacker executes a jump with a fixed
direction that maps to the same BHT entry as the branch
predicted based on the victim’s secret. By measuring the
timing of the branch in the attacker process, an attacker can
infer whether the victim took the branch. We extract the
branch information over 1 000 000 samples with an F-score
of 0.94 (C906) and 1 (U74).

9

TABLE 1: Papers using similar case studies for evaluation.
Case Study Paper

Square and Multiply attack on MbedTLS [77], [101], [43], [55], [26], [72], [61]
AES T-Table attack on OpenSSL [9], [69], [36], [48], [59], [35], [19], [92], [60], [11], [73]
KASLR break [42], [49], [22], [53], [12], [76], [81], [57], [95]
Interrupt Detection [67], [18], [58], [103]

5. Case Studies

We show the applicability of our evaluated attacks in 6
case studies. These studies demonstrate the attack primitives
introduced in Section 4. The case studies are chosen in
line with previous papers to make our results comparable.
Table 1 lists papers that used similar case studies on other
architectures, enabling comparison with our results. In Sec-
tion 5.6 we attack the OpenSSL 1.0.1e AES T-Table im-
plementation with Flush+Reload, Prime+Probe, and Evict+
Reload. Section 5.1, uses Flush+Fault to attack a vulnerable
RSA implementation as found in MbedTLS 1.13.10. We
show the first KASLR breaks on RISC-V using timing and
retired instructions in Section 5.2. In two case studies, we
demonstrate the security implications of the unprivileged
rdinstret instruction by bypassing branch shadowing
mitigations in Section 5.3 and leaking the contents of a read-
protected folder in Section 5.4. Section 5.5 uses CycleDrift
to infer kernel activity, detecting network interrupts.

Methodology. We structure our case study by attack
primitive. Firstly we evaluate the novel primitives discovered
in Sections 4.1 to 4.3 in Sections 5.1 to 5.5. We then
reproduce the well-known cache attack primitives from Sec-
tion 4.4 by performing AES T-Table attack in Section 5.6.

5.1. Flush+Fault on Square and Multiply

This case study demonstrates Flush+Fault to recover the
control flow of a victim, thereby leaking the private key of an
RSA implementation as found in MbedTLS version 1.3.10.
We attack MbedTLS, as this library is a common attack
target that researchers use to demonstrate their side-channel
attacks [77], [101], [43], [55], [26], [72], [61], thus allowing
better comparisons with related work. More specifically, our
attack leaks a 2048-bit RSA private key by attacking the
square-and-multiply implementation of the shared library.

Overview. Our attack works by exploiting that the
victim square-and-multiply implementation leaves different
traces in the CPU cache depending on the secret bits of
the private key. More precisely, our attacker, sharing the
I-Cache cache with the victim, monitors a cache line that
is only cached when the current secret bit of the exponent
is a ‘1’ bit. Thus, we can infer that the bit was ‘1’ if we
see a cache hit and that the bit was ‘0’ otherwise. As the
C906 does not have shared instruction and data caches, we
have to rely on Flush+Fault instead of the normal Flush+
Reload. As the U74 does not provide an unprivileged flush
instruction, we rely on the fence instruction as in Fence+
Reload to mount Flush+Fault.

Threat Model. We assume an unprivileged attacker
running on the same system as the victim decryption routine.

1.06
1.08
1.1

1.12
·104

Ti
m

e
[c

yc
le

s]

0 50 100 150

4,200
4,400
4,600

Offset in multiple of pagesize

In
st

r.

Figure 7: Access time (top, C906) and retired instructions
(bottom, U74) for mapped and unmapped kernel pages

The attacker is given oracle access to the victim routine, i.e.,
can decrypt arbitrarily often. Furthermore, we assume that
the attacker and the victim share their I-Cache.

Evaluation. We evaluate our attack by leaking the entire
2048-bit private key from the shared library using the ret
instruction-based Flush+Fault. Figure 17 shows the signal
on the C906 for the first 20 bits of the key, obtained by
decrypting the same message 100 times and plotting the
minimal measurement for each key bit. Faster access times,
corresponding to ‘1’ bits, can be clearly distinguished from
the slower access times corresponding to ‘0’ bits. Using the
signal from these 100 iterations, we leak all 2048 bits of
the RSA key with an accuracy of 99.9 % (n = 100) on both
the C906 and U74. More precisely, our experiments leak on
average 2046.3 (on the U74) and 2046.1 (on the C906) key
bits. The remaining two bits can easily be brute-forced by
an attacker by testing

(
2048
2

)
≈ 221 combinations.

5.2. KASLR Break

This case study presents the first microarchitectural
KASLR break on RISC-V. Our KASLR break exploits
the side-channel leakage from the page-table walk to infer
whether a kernel address is physically backed. While fine-
grained per-function randomization for kernel code is in
development [54], the current coarse-grained KASLR only
randomizes the starting position of kernel code [12]. Thus,
to derandomize the kernel location, it is sufficient to detect
where a known kernel function, e.g., the start of the kernel
image, is mapped [12].

Overview. Both analyzed CPUs use 39-bit virtual ad-
dresses, which use 3 levels of page tables to translate virtual
to physical addresses [98]. Both CPUs show different timing
behavior depending on the page-table level on which a page
fault is resolved. If an entire range of virtual addresses is not
mapped, the page-table walk can already abort at an early
level; there are no further levels for which permissions must
be checked. In contrast, if a virtual address is physically
backed, the page-table walk has to walk all levels and can
only abort at the final page-table level due to the permission
check. We measure the time it takes to execute a load
instruction on kernel memory and handle the fault using
a signal handler. The timing determines whether a kernel
virtual address is physically backed. Additionally, on the

10

U74, the aborts on different page-table levels lead to a
different number of retired instructions.

Threat Model. We assume an unprivileged attacker
and no kernel-level mitigations against microarchitectural
KASLR breaks, such as KAISER [32], LAZARUS [28], or
FLARE [12]. This is a realistic assumption, as all these
countermeasures are implemented for x86 systems using
specific properties of the x86 architecture.

Evaluation. In line with microarchitectural KASLR
breaks on x86, we scan over the entire kernel address space
to identify mapped and unmapped pages. Trying to load data
from a mapped page (and handling the resulting fault using
a signal handler) results in a higher access time (and in the
case of the U74, more retired instructions) due to the longer
page-table walk. Figure 7 shows the different behavior of
mapped and unmapped pages on the C906 and U74. On the
C906, testing one page takes 1456 µs and reveals whether
the page is physically backed with an accuracy of 100 %.
On the U74, we implement two different KASLR breaks
using access times and retired instructions. Testing one page
takes 125 µs independent of the used method. A full KASLR
break, testing all 512 possible locations of the kernel [12],
[56] takes 745.4 ms on the C906 and 54 ms on the U74. We
note that this could be further optimized by aborting when
the kernel is found instead of always testing all locations.
Both methods have 100 % accuracy.

5.3. Zigzagger Bypass

This case study shows that the Zigzagger [55], [40]
branch-shadowing mitigation can be bypassed using the
rdinstret instruction. Zigzagger is a compiler-based mit-
igation that obfuscates conditional branches by replacing
them with a series of indirect (decoy) jumps and conditional
moves. The main idea is that an indirect jump does not leak
its target via the branch predictor.

Overview. We show that the availability of the per-
formance counter for retired instructions, specified in the
RISC-V ISA [97], bypasses the Zigzagger mitigation. We
use a ported version of the Zigzagger example from SGX-
Step [90] (cf. Listing 2 in Appendix A). We run all possible
branches of the Zigzagger code, profiling the number of
retired instructions. Different arguments to the Zigzagger
code result in differences in the retired instruction count.
Even constant-time versions of the Zigzagger mitigation [40]
have differences in instruction counts [66]. Similarly to
Moghimi et al. [66], we show that these differences can
be exploited via a side channel.

Threat Model. We assume an unprivileged attacker that
can access the retired-instructions performance counter, e.g.,
via the unprivileged rdinstret instruction. The victim
code under attack uses the Zigzagger mitigation. As previ-
ous work showed, an unprivileged attacker can preempt a
victim [37], [8]. Thus, in line with recent work [15], we
assume that the attacker and victim take turns.

Evaluation. The 3 different cases for invoking the pro-
tected function have a distinct number of retired instructions
on the C906 and the U74, making them distinguishable.

Due to the deterministic architectural information, the attack
has a perfect F-score of 1 for distinguishing all branch
combinations. Using a timing-based side channel decreases
the F-score to 0.99 in the tested simple Zigzagger code. For
more complex code, e.g., with variable-latency instructions,
we expect more noise in the latency domain, implying less
precise results. The attack has a temporal resolution of
111 ns on the C906 and 551 ns on the U74.

Comparison to CopyCat [66]. Our attack achieves
the same goal as CopyCat on Intel CPUs. While CopyCat
also exploits the number of retired instructions to break the
Zigzagger mitigation, CopyCat requires a privileged attacker
and targets code running inside the SGX trusted execution
environment. Our unprivileged version of this attack on
RISC-V works on a broader range of targets.

5.4. Leaking Contents of a Drop-Box Folder

In this case study, we demonstrate that the unprivileged
rdinstret instruction can be exploited to leak the files
inside a write-only (drop-box) folder. Such a folder has its
permissions configured so that a user can copy items to
the folder but cannot see the contents of the folder, which
are only visible to folder owners [5]. As the rdinstret
instruction also counts the number of retired instructions
of the kernel, and file-handling code in the kernel is not
implemented using constant-time algorithms, we can see
differences when opening non-existing files and files with
mismatching permissions.

Overview. In our setup, we use such a drop-box folder
by setting the permissions so that only the owner of the
folder has read access to the folder. This prevents anyone
else from listing the directory content and only allows the
creation of files in the folder. By configuring the drop-
box directory such that added files inherit the directory’s
owner, all users can write to the folder, but only the owner
can read its contents. We show that using the rdinstret
instruction, it is possible to detect whether a given file is
stored inside the drop-box folder. An attacker tries to open
it directly through the openat system call to detect if a
file exists within the drop-box folder. If the requested file
exists, the operating system continues with the permission
check, executing more instructions. If the file does not exist,
the operating system can directly abort.

Threat model. We assume the attacker can access a
drop-box folder and read the unprivileged instret perfor-
mance counter. The attack does not require any privileges
or any specific libc version.

Evaluation. The number of retired instructions in-
creases from 3647 to 4491 on the C906 and 4266 to 5117
on the U74 if a file exists. The number of instructions is
extremely stable since no microarchitectural effects with
unpredictable timings, such as caching, are involved in the
attack. We rely on two measurements to rule out potential
interrupts and rescheduling of the attacker. With this setup,
we achieve an F-score of 1. Each access takes 2.7 ms on the
C906 and 0.33 ms on the U74. As a comparison, we evaluate
the same attack with the runtime (rdcycle), which leads to

11

5 10 15 20 25 30

−5 · 106
0

5 · 106

Observation

∆
In

st
r./

s

Figure 8: Network interrupt detection on the C906. The red
dots indicate when a network request was sent to the board.

a noisier attack due to caching effects. When using timing,
the F-score is 0.7 on the U74 and 0.2 on the C906.

5.5. Interrupt Detection via CycleDrift

This case study shows that CycleDrift detects asyn-
chronous operating-system events, such as interrupts. Previ-
ous work showed that detecting interrupts is a privacy risk,
as they can be used to spy on entered text [67], [18], [58]
or to fingerprint visited websites [58], [103].

Overview. As discussed in Section 4.3, the
rdinstret instruction also counts the number of
retired instructions of the kernel. Hence, by looking at this
number of retired instructions over a constant attacker-
chosen time interval, an attacker can infer asynchronous
events on the current CPU core. Similar to Zhang et al.
[103], we use the number of retired instructions within
a fixed coarse-grained time interval of 1 s. The attacker
periodically records the number of retired instructions
while executing instructions requiring a minimal amount of
cycles. As the attacker code is known and deterministic, the
number of retired instructions only depends on other code
executed on the same CPU core. If an interrupt is executed
on the CPU core, the number of retired instructions
decreases, depending on the number of high-latency
instructions in the interrupt handler.

Threat Model. We assume the attacker can execute
native code on the CPU that handles interrupts. This is a
realistic assumption, as the attacker can change the program
affinity. The attacker does not require any privileges or a
high-resolution counter as in previous work [78].

Evaluation. Figure 8 shows the difference of retired
instructions to the average number of retired instruction
within 5 s on the C906. We send network requests to the
C906, marked as red circles in the plot. When the board
receives such a network request, an interrupt is triggered
and handled by the kernel. In the plot, this can be seen as
a downward spike. This method detects interrupts reliably.

5.6. AES T-Table Attacks

In this section, we show that Evict+Reload and Prime+
Probe attacks described in Section 3.2 on the AES T-tables
implementation can be successfully mounted on both the
C906 and U74. We additionally evaluate a Flush+Reload
attack on the C906, as the unprivileged data-cache flushing
is unavailable on U74. Although this AES implementation

Plaintext byte
00 40 80 c0 f8

Evict+Reload (C906)

Plaintext byte
00 40 80 c0 f8

Flush+Reload (C906)

Plaintext byte
00 40 80 c0 f8

Prime+Probe (C906)

C
ac

he
lin

e

0

4

8

12

15

C
ac

he
lin

e

0

4

8

12

15

C
ac

he
lin

e

0

4

8

12

15

Plaintext byte
00 40 80 c0 f8

Evict+Reload (U74)

Plaintext byte
00 40 80 c0 f8

Prime+Probe (U74)

C
ac

he
lin

e

0

4

8

12

15

C
ac

he
lin

e

0

4

8

12

15

Figure 9: Cache hits on the first T-table on C906 (300
encryptions) and on U74 (1000 encryptions). Darker means
more cache hits. k0 = 0x00.

is deprecated by OpenSSL, it is a well-known standard
benchmark to show the performance of cache attacks [9],
[69], [36], [48], [59], [35], [19], [92], [60], [11], [73].

Overview. In line with previous work, we use the vul-
nerable OpenSSL version 1.0.1e. In the T-table-based AES
implementation, accesses to the T-table purely depend on
the plaintext and secret key. Specifically, T-table cache-line
accesses are made to entries Tj [pi ⊕ ki] with i ≡ j mod 4
and 0 ≤ i < 16 at the first round of encryption. Therefore,
cache line Tj [pi⊕ki] is accessed in 100 % of the encryptions.
For the other pj , the remaining addresses are accessed in
92.5 % of the encryptions. Therefore, such an access pattern
allows attackers to use cache attacks to derive values for
pi⊕ki, and the specific value of ki with a chosen plaintext.
As with prior work [35], we assume that an attacker knows
the T-table addresses. We do not perform a full secret-key-
recovery attack, as we only illustrate how traditional cache
attacks can be reproduced on RISC-V CPUs.

Threat Model. We assume that the targeted crypto-
graphic library uses a vulnerable AES T-table implemen-
tation. Furthermore, if Flush+Reload or Evict+Reload are
used, the T-table must reside in shared memory. If Prime+
Probe is used, the T-table can reside in non-shared memory.
We do not assume any privileges for the attacker.

Evaluation. Figure 9 compares the used cache-attack
primitives on both CPUs. The access patterns of T-table
entries are generated by randomly chosen plaintexts and a
fixed key value 0x00. Similar results have been shown on
Intel, AMD, and ARM devices [36], [35], [59], [92]. With
only 300 encryptions, the cache line expected to be accessed
in 100 % of the encryptions is clearly distinguishable on the
C906. The attacker needs more encryptions to reproduce
attacks on the U74 due to a shared L2 cache and the random
replacement strategy. The attacks can derive the secret value,
making the attack primitives usable in realistic scenarios.

12

TABLE 2: Systematic analysis of microarchitectural attacks
and attack primitives on the C906 and U74, including pro-
posed hardware countermeasures that could prevent them.

Primitive C906 U74 Hardware Countermea-
sures

G
en

er
ic

High-resolution timer 3 3 Privileged timer [37], Fuzzy
time [41], low-resolution
timers [68]

TLB eviction 3 3 Partitioned TLB [30],
Random-Fill TLB [17]

Branch Pred. Evict 3 3 Secure branch predic-
tors [104]

Performance counters 3 3 Privileged counters [38]

A
tta

ck
s

Flush+Reload/Flush+Fault 3 7 Privileged flush [102]
Flush+Flush ˜ 7 Constant-time flush [35]

Evict+Reload 3 3 Randomized caches [99],
[74], [89], cache partition-
ing [75], [96], [62]

Prime+Probe 3 3 Randomized caches [99],
[74], [89], cache partition-
ing [75], [96], [62]

Cache+Time 3 3 Cache partitioning [75],
[96], [62]

CycleDrift 3 3 Privileged counters [38]

˜ cannot distinguish cache hit from miss for non-modified cache line

6. Discussion

This section discusses design decisions of the RISC-V
ISA and the specifics of the C906 and U74 that enable or
foster microarchitectural attacks. We argue that several pro-
posals for hardware mitigations against such attacks would
have been relatively easy to integrate into these CPUs.

RISC-V ISA Design. The RISC-V ISA is not spe-
cific regarding implementation details [97]. Therefore, the
base instruction set does not include functions that interact
with the microarchitecture, such as cache-maintenance in-
structions. The ISA reserves an opcode range for custom
instructions to implement such functionality.

Still, the ISA mandates unprivileged instructions that
provide insight into the microarchitecture. Although per-
formance counters are not configurable in user space, a
subset of them is always accessible [97]. This contrasts the
design of x86 and ARM, in which performance counters are
privileged and can only be made unprivileged by the oper-
ating system. Linux provided unprivileged read access to
some performance counters for some time. However, since
these interfaces have been exploited for microarchitectural
attacks [59], [10], they are only available to privileged users
on many distributions, or at least limited to the scope of
one’s own application. The RISC-V ISA manual argues that
access to these counters is mandatory for performance anal-
ysis and optimizations [97]. Other new designs completely
remove the option for unprivileged performance counter
[38] and cycle-accurate timer access.

We see two unprivileged instructions as especially prob-
lematic: the rdcycle and rdinstret instructions. These
two instructions allow reading the timestamp counter and
the number of retired instructions and are available to un-
privileged attackers. The timestamp counter has been used

for nearly all microarchitectural attacks and also in this
paper. Thus, when designing a new ISA, it would have been
advisable to provide at least an option to prevent access to
the timestamp counter for unprivileged applications, as is
the case for x86 [45] and ARM [59]. Even better, this in-
struction should be privileged by default or not available for
unprivileged code, as for the Apple M1 [39]. Additionally,
rdinstret provides the number of retired instructions of
the entire CPU core to an unprivileged attacker. As shown
in Section 5.2, the rdinstret instruction allows for a
reliable KASLR break. In addition, the amount of retired
instructions leaks information from a higher-privileged se-
curity domain, i.e., the kernel, to a lower-privileged security
domain, i.e., the user space. In Section 5.5, this is ex-
ploited to leak interrupt behavior to a user-space application.
While such leakage is possible based on timing primitives,
it is significantly amplified and made architectural by the
rdinstret instruction. Therefore, this instruction delib-
erately weakens the isolation boundary between the user
and kernel space. We expect that this instruction can also
become problematic in virtualized contexts.

Individual CPU Design. Several design decisions in
the C906 and U74 are problematic regarding microarchi-
tectural attacks. First, the addition of the custom unpriv-
ileged flush instructions on the C906. Adding privileged
flush instructions as present on the U74 is unproblematic
from a security perspective, and it can be necessary for
specific functionality, such as interaction with memory-
mapped devices. However, we do not see the need for an
unprivileged flush instruction. Unprivileged flush instruc-
tions have been exploited for different microarchitectural
attack primitives [102], [51], [35], [20]. The decision to
make some flush instructions privileged suggests that at least
some security implications were considered when designing
the custom instruction set extension. As shown by the
ARMv7 [59] and Apple M1 [39] CPUs, it is possible not
to expose any flush instruction to the user space. Second,
the choice of the cache-replacement policy on the C906
and to a lesser extent on the U74 are problematic for mi-
croarchitectural security. With the fully-deterministic LRU
policy on the C906, eviction-based attacks are reliable and
noisefree. Modern policies often use (pseudo)randomness
in the replacement strategy [1]. This (pseudo)randomness
is introduced for performance reasons [1], but has the side
effect of complicating eviction-based attacks [59], [34], [93].
Hence, using a (pseudo)random replacement policy as on
ARM [59] could impede attacks without adding significant
complexity to the implementation or decreasing the perfor-
mance. While the U74 uses a random replacement policy,
it only does so in the L1 I-Cache and L2 Cache. As the L1
I-Cache can be flushed using the fence.i, the random
replacement policy in the U74 only mitigates cross-core
attacks on the shared L2 Cache. Third, although limited, the
branch prediction implemented on the C906 and U74 still is
problematic. From previous attacks, such as Spectre [52], it
should be clear that speculation is problematic for security,
and mechanisms to control and abort speculation [44], [52],
[13] should be provided when adding speculation to a CPU.

13

Hardware Mitigations. Table 2 shows the results of our
systematic side-channel evaluation on the C906 and U74.
For some attacks and attack primitives, hardware counter-
measures have been proposed in the past. A commonly pro-
posed countermeasure is to make instructions, such as flush,
privileged [71] or execute in constant time [35]. Eviction-
based side channels can be impeded by using randomiza-
tion [17], [99], [74], [89], [44], [104] or partitioning [75],
[96], [62]. These countermeasures prevent or significantly
impede our discussed attacks. Many of these countermea-
sures do not have any performance overhead [37], [41],
[71] or even improve performance in some scenarios [99].
Also, the implementation complexity of these mitigations
is realistic and well-evaluated for a small to medium-sized
CPU such as the C906 and U74. Still, no such mitigation
is implemented, showing that there needs to be more focus
on security for CPU implementations. We hope that future
work can show that the proposed hardware countermeasures
can significantly improve the security of RISC-V CPUs.

Other Boards and Cores. All currently available
boards running a full Linux distribution use either the C906
or one of the Freedom cores from SiFive [24]. For this paper,
we use all hardware cores that are currently (March 2023)
buyable and run a full-fledged 64-bit Linux distribution.
Other existing RISC-V cores either only exist as FPGA
designs or lack the capabilities to run a full-fledged Linux
distribution. Using hardware cores has the advantage that
findings are valid for all instances. In contrast, FPGA-based
RISC-V cores might have differences with respect to side
channels caused by the synthetization process.

7. Conclusion

This paper analyzed the XuanTie C906 and SiFive U74,
two of the first COTS 64-bit RISC-V CPUs. In our system-
atic evaluation of their design, we discovered 3 new attack
techniques based on RISC-V-specific design and implemen-
tation decisions. We showed that known attacks, such as
Flush+Reload (or the new variant Flush+Fault) and Prime+
Probe apply to these CPUs. In 6 case studies, we showed
that we can leak keys from AES and RSA implementations,
break KASLR, leak file names from inaccessible write-
only folders, bypass the Zigzagger mitigation, and detect
interrupt handling. We stress that reducing the attack surface
by hardening an ISA and the microarchitecture should be
part of CPU designs to ensure the security of future devices.

Acknowledgment

We want to thank our shepherd and the anonymous
reviewers for their comments and suggestions. We also
want to thank Andreas Kogler for fruitful discussions. This
work was supported in part by Semiconductor Research
Corporation (SRC) Hardware Security Program (HWS).

References

[1] A. Abel and J. Reineke, “Reverse engineering of cache replacement
policies in intel microprocessors and their evaluation,” in Interna-

tional Symposium on Performance Analysis of Systems and Software
(ISPASS), 2014.

[2] O. Acıiçmez, c. K. Koç, and J.-p. Seifert, “On the Power of Simple
Branch Prediction Analysis,” in AsiaCCS, 2007.

[3] O. Acıiçmez, J.-P. Seifert, and c. K. Koç, “Predicting secret keys
via branch prediction,” in CT-RSA, 2007.

[4] M. M. Ahmadi, F. Khalid, and M. Shafique, “Side-channel attacks on
risc-v processors: Current progress, challenges, and opportunities,”
arXiv preprint, 2021.

[5] Apple, “macOS Sierra: Set permissions for items on your Mac,”
2019. [Online]. Available: https://support.apple.com/kb/PH25287

[6] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Berkley, 2016.

[7] K. Asanović and D. A. Patterson, “Instruction sets should be free:
The case for risc-v,” University of California Berkeley, 2014.

[8] C. Ashokkumar, R. P. Giri, and B. Menezes, “Highly efficient algo-
rithms for aes key retrieval in cache access attacks,” in EuroS&P,
2016.

[9] D. J. Bernstein, “Cache-Timing Attacks on AES,” 2005. [Online].
Available: http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[10] S. Bhattacharya, C.-m.-t.-n. Maurice, S. Bhasin, and D. Mukhopad-
hyay, “Template Attack on Blinded Scalar Multiplication with
Asynchronous perf-ioctl Calls,” Cryptology ePrint Archive, Report
2017/968, 2017.

[11] S. Briongos, P. Malagón, J. M. Moya, and T. Eisenbarth,
“RELOAD+REFRESH: Abusing Cache Replacement Policies to
Perform Stealthy Cache Attacks,” in USENIX Security Symposium,
2020.

[12] C. Canella, M. Schwarz, M. Haubenwallner, M. Schwarzl, and
D. Gruss, “KASLR: Break It, Fix It, Repeat,” in AsiaCCS, 2020.

[13] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg,
P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss, “A System-
atic Evaluation of Transient Execution Attacks and Defenses,” in
USENIX Security Symposium, 2019, extended classification tree and
PoCs at https://transient.fail/.

[14] C. Celio, D. A. Patterson, and K. Asanović, “The Berkeley Out-of-
Order Machine (BOOM): An Industry-Competitive, Synthesizable,
Parameterized RISC-V Processor,” Tech. Rep., 2015.

[15] M. Dai, R. Paccagnella, M. Gomez-Garcia, J. McCalpin, and
M. Yan, “Don’t mesh around: Side-Channel attacks and mitigations
on mesh interconnects,” in USENIX Security Symposium, 2022.

[16] Debian Wiki, “ASIC implementations, i.e. ”real” CPU chips,”
2022. [Online]. Available: https://wiki.debian.org/RISC-V#ASIC
implementations.2C i.e. .22real.22 CPU chips

[17] S. Deng, W. Xiong, and J. Szefer, “Secure TLBs,” in ISCA, 2019.

[18] W. Diao, X. Liu, Z. Li, and K. Zhang, “No Pardon for the Interrup-
tion: New Inference Attacks on Android Through Interrupt Timing
Analysis,” in S&P, 2016.

[19] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen,
“Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using
Intel TSX,” in USENIX Security Symposium, 2017.

[20] C. Easdon, M. Schwarz, M. Schwarzl, and D. Gruss, “Rapid Proto-
typing for Microarchitectural Attacks,” in USENIX Security, 2022.

[21] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Covert chan-
nels through branch predictors: a feasibility study,” in HASP, 2015.

[22] ——, “Jump Over ASLR: Attacking Branch Predictors to Bypass
ASLR,” in MICRO, 2016.

[23] A. Fog, “The microarchitecture of Intel, AMD and VIA CPUs:
An optimization guide for assembly programmers and compiler
makers,” 2016.

14

[24] R.-V. Foundation, “RISC-V Exchange: Available Boards,” 2022.
[Online]. Available: https://riscv.org/exchanges/boards/

[25] F. A. Fuchs, J. Woodruff, S. W. Moore, P. G. Neumann, and R. N.
Watson, “Developing a Test Suite for Transient-Execution Attacks
on RISC-V and CHERI-RISC-V,” 2021.

[26] C. P. Garcı́a, S. Ul Hassan, N. Tuveri, I. Gridin, A. C. Aldaya,
and B. B. Brumley, “Certified side channels,” in USENIX Security
Symposium, 2020.

[27] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A Survey of Microar-
chitectural Timing Attacks and Countermeasures on Contemporary
Hardware,” Journal of Cryptographic Engineering, 2016.

[28] D. Gens, O. Arias, D. Sullivan, C. Liebchen, Y. Jin, and A.-
R. Sadeghi, “LAZARUS: Practical Side-Channel Resilient Kernel-
Space Randomization,” in RAID, 2017.

[29] A. Gonzalez, B. Korpan, J. Zhao, E. Younis, and K. Asanović,
“Replicating and Mitigating Spectre Attacks on a Open Source
RISC-V Microarchitecture,” in Third Workshop on Computer Ar-
chitecture Research with RISC-V (CARRV), 2019.

[30] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation Leak-
aside Buffer: Defeating Cache Side-channel Protections with TLB
Attacks,” in USENIX Security Symposium, 2018.

[31] M. Green, L. Rodrigues-Lima, A. Zankl, G. Irazoqui, J. Heyszl, and
T. Eisenbarth, “AutoLock: Why Cache Attacks on ARM Are Harder
Than You Think,” in USENIX Security Symposium, 2017.

[32] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Man-
gard, “KASLR is Dead: Long Live KASLR,” in ESSoS, 2017.

[33] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
Side-Channel Attacks: Bypassing SMAP and Kernel ASLR,” in
CCS, 2016.

[34] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript,” in DIMVA, 2016.

[35] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush:
A Fast and Stealthy Cache Attack,” in DIMVA, 2016.

[36] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches,” in USENIX
Security Symposium, 2015.

[37] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games – Bringing
Access-Based Cache Attacks on AES to Practice,” in S&P, 2011.

[38] M. Handley, “M1 Exploration - v0.70,” 2021.

[39] L. Hetterich and M. Schwarz, “Branch Different - Spectre Attacks
on Apple Silicon,” in DIMVA, 2022.

[40] S. Hosseinzadeh, H. Liljestrand, V. Leppänen, and A. Paverd, “Miti-
gating Branch-Shadowing Attacks on Intel SGX using Control Flow
Randomization,” arXiv:1808.06478, 2018.

[41] W.-M. Hu, “Reducing Timing Channels with Fuzzy Time,” Journal
of Computer Security, 1992.

[42] R. Hund, C. Willems, and T. Holz, “Practical Timing Side Channel
Attacks against Kernel Space ASLR,” in S&P, 2013.

[43] T. Huo, X. Meng, W. Wang, C. Hao, P. Zhao, J. Zhai, and M. Li,
“Bluethunder: A 2-level Directional Predictor Based Side-Channel
Attack against SGX,” in CHES, 2020.

[44] Intel, “Speculative Execution Side Channel Mitigations,” 2018, re-
vision 3.0.

[45] ——, “Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide,” 2019.

[46] Intel Corporation, “Guidelines for Mitigating Timing Side
Channels Against Cryptographic Implementations,” 2020.
[Online]. Available: https://www.intel.com/content/www/us/en/
developer/articles/technical/software-security-guidance/secure-
coding/mitigate-timing-side-channel-crypto-implementation.html

[47] ——, “Data Operand Independent Timing Instruction Set
Architecture (ISA) Guidance,” 2022. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/best-practices/data-operand-
independent-timing-isa-guidance.html

[48] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A Shared Cache
Attack that Works Across Cores and Defies VM Sandboxing – and
its Application to AES,” in S&P, 2015.

[49] Y. Jang, S. Lee, and T. Kim, “Breaking Kernel Address Space Layout
Randomization with Intel TSX,” in CCS, 2016.

[50] B. Johannesmeyer, J. Koschel, K. Razavi, H. Bos, and C. Giuffrida,
“Kasper: Scanning for Generalized Transient Execution Gadgets in
the Linux Kernel,” in NDSS, 2022.

[51] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors,” in
ISCA, 2014.

[52] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre Attacks: Exploiting Speculative Execution,” in
S&P, 2019.

[53] J. Koschel, C. Giuffrida, H. Bos, and K. Razavi, “TagBleed: Break-
ing KASLR on the Isolated Kernel Address Space Using Tagged
TLBs,” in EuroS&P, 2020.

[54] M. Larabel, “FGKASLR Patches Revised A 10th Time For
Improving Linux Kernel Security,” 2022. [Online]. Available:
https://www.phoronix.com/news/FGKASLR-Linux-v10

[55] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing,” in USENIX Security Symposium, 2017.

[56] Z. Li, “Support KASLR for RISC-V,” 2020. [Online]. Available:
https://lwn.net/Articles/815891/

[57] M. Lipp, D. Gruss, and M. Schwarz, “AMD Prefetch Attacks
through Power and Time,” in USENIX Security, 2022.

[58] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C.-m.-t.-n. Maurice,
and S. Mangard, “Practical Keystroke Timing Attacks in Sandboxed
JavaScript,” in ESORICS, 2017.

[59] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“ARMageddon: Cache Attacks on Mobile Devices,” in USENIX
Security Symposium, 2016.

[60] M. Lipp, V. Hadžić, M. Schwarz, A. Perais, C. Maurice, and
D. Gruss, “Take a Way: Exploring the Security Implications of
AMD’s Cache Way Predictors,” in AsiaCCS, 2020.

[61] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella,
and D. Gruss, “PLATYPUS: Software-based Power Side-Channel
Attacks on x86,” in S&P, 2020.

[62] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in
cloud computing,” in HPCA, 2016.

[63] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level
Cache Side-Channel Attacks are Practical,” in S&P, 2015.

[64] X. Lou, T. Zhang, J. Jiang, and Y. Zhang, “A survey of mi-
croarchitectural side-channel vulnerabilities, attacks, and defenses
in cryptography,” ACM CSUR, 2021.

[65] P. Mata and N. Rao, “Flush-reload attack and its mitigation on an
fpga based compressed cache design,” in International Symposium
on Quality Electronic Design, 2021.

[66] D. Moghimi, J. V. Bulck, N. Heninger, F. Piessens, and B. Sunar,
“CopyCat: Controlled Instruction-Level Attacks on Enclaves for
Maximal Key Extraction,” in USENIX Security Symposium, 2020.

[67] J. Monaco, “SoK: Keylogging Side Channels,” in S&P, 2018.

15

[68] Mozilla, “performance.now resolution,” 2019. [On-
line]. Available: https://developer.mozilla.org/en-US/docs/Web/API/
Performance/now

[69] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and
Countermeasures: the Case of AES,” in CT-RSA, 2006.

[70] C. Percival, “Cache Missing for Fun and Profit,” in BSDCan, 2005.

[71] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks,”
in USENIX Security Symposium, 2016.

[72] I. Puddu, M. Schneider, M. Haller, and S. Čapkun, “Frontal Attack:
Leaking Control-Flow in SGX via the CPU Frontend,” in USENIX
Security Symposium, 2021.

[73] A. Purnal, F. Turan, and I. Verbauwhede, “Prime+Scope: Over-
coming the Observer Effect for High-Precision Cache Contention
Attacks,” in CCS, 2021.

[74] G. Saileshwar and M. Qureshi, “MIRAGE: Mitigating conflict-based
cache attacks with a practical fully-associative design,” in USENIX
Security Symposium, 2021.

[75] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and efficient fine-
grain cache partitioning,” in Proceedings of the annual international
symposium on Computer architecture, 2011.

[76] M. Schwarz, C. Canella, L. Giner, and D. Gruss, “Store-to-
Leak Forwarding: Leaking Data on Meltdown-resistant CPUs,”
arXiv:1905.05725, 2019.

[77] M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Mangard,
“Malware Guard Extension: Using SGX to Conceal Cache Attacks,”
in DIMVA, 2017.

[78] M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spre-
itzer, and S. Mangard, “KeyDrown: Eliminating Software-Based
Keystroke Timing Side-Channel Attacks,” in NDSS, 2018.

[79] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic
Timers and Where to Find Them: High-Resolution Microarchitec-
tural Attacks in JavaScript,” in FC, 2017.

[80] M. Schwarzl, P. Borrello, A. Kogler, K. Varda, T. Schuster, D. Gruss,
and M. Schwarz, “Robust and scalable process isolation against
spectre in the cloud,” in ESORICS, 2022.

[81] M. Schwarzl, T. Schuster, M. Schwarz, and D. Gruss, “Speculative
Dereferencing of Registers: Reviving Foreshadow,” in FC, 2021.

[82] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space randomization,”
in CCS, 2004.

[83] SiFive, “HF105 Datasheet,” 2022. [Online]. Avail-
able: https://sifive.cdn.prismic.io/sifive/d0556df9-55c6-47a8-b0f2-
4b1521546543 hifive-unmatched-datasheet.pdf

[84] ——, “U74 core complex manual,” 2022. [Online]. Avail-
able: https://sifive.cdn.prismic.io/sifive/ad5577a0-9a00-45c9-a5d0-
424a3d586060 u74 core complex manual 21G3.pdf

[85] Sipeed, “RISC-V 64bit chip (C910) run Android 10,”
2022. [Online]. Available: https://twitter.com/SipeedIO/status/
1457529282134089734

[86] J. Szefer, “Survey of microarchitectural side and covert channels,
attacks, and defenses,” Journal of Hardware and Systems Security,
vol. 3, no. 3, pp. 219–234, 2019.

[87] T-Head, “C906,” 2022. [Online]. Available: https://www.t-head.cn/
product/c906

[88] T-Head Semiconductor, “Xuantie c906 r1s0 user manual,” 2022.
[Online]. Available: https://dl.linux-sunxi.org/D1/Xuantie C906
R1S0 User Manual.pdf

[89] Q. Tan, Z. Zeng, K. Bu, and K. Ren, “PhantomCache: Obfuscating
Cache Conflicts with Localized Randomization,” in NDSS, 2020.

[90] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step: A Practi-
cal Attack Framework for Precise Enclave Execution Control,” in
Workshop on System Software for Trusted Execution, 2017.

[91] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling Your Secrets Without Page Faults: Stealthy Page Table-
Based Attacks on Enclaved Execution,” in USENIX Security Sym-
posium, 2017.

[92] S. Van Schaik, C. Giuffrida, H. Bos, and K. Razavi, “Malicious
Management Unit: Why Stopping Cache Attacks in Software is
Harder Than You Think,” in USENIX Security Symposium, 2018.

[93] P. Vila, B. Köpf, and J. Morales, “Theory and Practice of Finding
Eviction Sets,” in S&P, 2019.

[94] L. Wagner, “Mitigations landing for new class of timing attack,”
2018.

[95] Y. Wang, R. Paccagnella, E. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, “Hertzbleed: Turning power side-channel attacks
into remote timing attacks on x86,” in USENIX Security Symposium,
2022.

[96] Z. Wang and R. B. Lee, “New cache designs for thwarting soft-
ware cache-based side channel attacks,” ACM SIGARCH Computer
Architecture News, vol. 35, no. 2, 2007.

[97] A. Waterman and K. Asanović, “The RISC-V Instruction Set Man-
ual, Vol. I: Unprivileged ISA, Version 20191213,” 2019.

[98] A. Waterman, K. Asanović, and J. Hauser, “The RISC-V Instruction
Set Manual Volume II: Privileged Architecture, Document Version
20211203,” 2021.

[99] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “ScatterCache: Thwarting Cache Attacks via Cache Set
Randomization,” in USENIX Security Symposium, 2019.

[100] Xcalibyte, “Roma Laptop Pre-order,” 2022. [Online]. Available:
https://xcalibyte.com.cn/en/roma-preorder/

[101] Y. Xiao, M. Li, S. Chen, and Y. Zhang, “Stacco: Differentially An-
alyzing Side-channel Traces for Detecting SSL/TLS Vulnerabilities
in Secure Enclaves,” in CCS, 2017.

[102] Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security Sym-
posium, 2014.

[103] R. Zhang, T. Kim, D. Weber, and M. Schwarz, “(M)WAIT for It:
Bridging the Gap between Microarchitectural and Architectural Side
Channels,” in USENIX Security, 2023.

[104] T. Zhang, T. Lesch, K. Koltermann, and D. Evtyushkin, “STBPU:
A Reasonably Secure Branch Prediction Unit,” in DSN, 2022.

Appendix

Evaluation of Timing Primitives

Table 3 shows the resolution and increment of all avail-
able timing primitives on the C906 and U74. In addition, we
list whether the primitives are accessible to an unprivileged
attacker and can be exploited in microarchitectural attacks.

TABLE 3: C906 and U74 timing primitives (Debian).

Timer Unprivileged Exploitable Resolution Increment
C906 U74 C906 U74 C906 U74 C906 U74

rdcycle 3 3 3 3 1 ns 1 ns 1 1
csrr reg, cycle 3 3 3 3 1 ns 1 ns 1 1
clock gettime 3 3 3 3 1 ns 1 ns 1 1
counting thread 3 3 3∗ 3∗ 2 ns 1 ns 1 1
rdinstret 3 3 3† 3† 3 ns 1 ns 1 1
csrr reg, instret 3 3 3† 3† 3 ns 1 ns 1 1
rdtime 3 3 3 3 45 ns 45 ns 1 1
csrr reg, time 3 3 3 3 45 ns 45 ns 1 1

* requires an additional CPU core for the timer † not a generic
timer, but can be used for certain attacks

16

TABLE 4: Cache maintenance instructions on the devices.

Instruction Unpriv. Target Addressing Exec. Time

C
90

6

dcache.civa 3 D-Cache Virtual address 4 cycles
dcache.ciall 7 D-Cache Entire cache -
dcache.cipa 7 D-Cache Physical address -
dcache.cisw 7 D-Cache Way and set -
icache.iva 3 I-Cache Virtual address 4 cycles
icache.iall 7 I-Cache Entire cache -
icache.ipa 7 I-Cache Physical address -
fence.i 3 I-Cache Entire cache 914 cycles

U
74

clflush.D.L1 7 D-Cache Entire cache/Virtual address -
cldiscard.D.L1 7 D-Cache Entire cache/Virtual address -
fence.i 3 I-Cache Entire cache 28 cycles

0 50 100 150
0

500

1,000

Time [cycles]

O
bs

er
va

tio
ns

Cache hit
Cache miss

Figure 10: Flush+Reload histogram (C906) for the D-Cache
showing cache hits (dotted blue) and misses (solid red).

Cache Maintenance Instructions

Table 4 shows the cache maintenance instructions avail-
able on both the C906 and U74. For each instruction, we
list whether it can be accessed from an unprivileged context,
the cache it targets and the addressing mode that is used.

Padded Square and Multiply

Listing 1 shows a padded square and multiply imple-
mentation that cannot be distinguished by timing but only
by the number of retired instructions.

1 int sqmult(int bit, int a, int b) {
2 a *= a;
3 if(bit) a *= b;
4 else asm volatile("nop; nop; nop");
5 return a;
6 }

Listing 1: Padded square and multiply with constant cycle
behavior but differing in the amount of retired instructions

Zigzagger Bypass

In this section, we provide the RISC-V port of the
Zigzagger examples from Lee et al. [55]. Listing 2 shows
the code we used for the case study in Section 5.3. RISC-V
does not provide a conditional move instruction. We em-
ulated it using arithmetic and bitwise operations. As with
the cmov instruction on x86, our implementation is side-
channel resistant.

Histograms

We provide the histograms for the attacks in Section 4.4.

1 .macro cmov r1, r2, cond
2 seqz t2, cond
3 li t3, 0xFFFFFFFFFFFFFFFF
4 mul t2, t2, t3
5 xor t3, r2, r1
6 and t2, t2, t3
7 xor r1, r1, t2
8 .endm
9 zigzag bench:

10 beqz a0, zigzag bench ret
11 block0: la t1, block1
12 la t0, block2
13 cmov t1, t0, a0
14 block0 j: j zz1
15 block1: nop
16 la t1, block5
17 block1 j: j zz2
18 block2: la t1, block3
19 la t0, block4
20 cmov t1, t0, a1
21 block2 j: j zz3
22 block3: nop
23 la t1, block5
24 block3 j: j zz4
25 block4: nop
26 block5: nop
27 addi a0, a0, −1
28 j zigzag bench
29 zz1: j block1 j
30 zz2: j block2 j
31 zz3: j block3 j
32 zz4: jr t1
33 zigzag bench ret:
34 ret

Listing 2: RISC-V port of the Zigzagger example [55]

0 50 100 150 200 250
0

500

1,000

Time [cycles]

O
bs

er
va

tio
ns

Cache line dirty
Cache line clean

Figure 11: Flush+Flush histogram (C906). Left (solid red)
is the execution time of dcache.civa for a cached clean
cache line, on the right (dotted blue) for a modified (dirty)
line.

Flush+Reload. Figure 10 shows a histogram for ac-
cesses to uncached and cached target memory on the C906.

Flush+Flush. Figure 11 shows Flush+Flush on the
C906. The execution time is 6 cycles for flushing a non-
modified cache line (including measurement overhead), and
207 cycles for a modified cache line.

0 50 100 150
0

500

1,000

Time [cycles]

O
bs

er
va

tio
ns

Cache hit
Cache miss

Figure 12: Evict+Reload histogram (C906) with cache hits
(dotted blue) and cache misses (solid red) via eviction.

17

0 10 20 30
0

5 · 105

1 · 106

Time [cycles]

O
bs

er
va

tio
ns

Cache hit
Cache miss

Figure 13: Evict+Reload histogram (U74) for cache hits
(dotted blue) and cache misses (solid red) via eviction.

0 200 400 600
0

500

1,000

Time [cycles]

O
bs

er
va

tio
ns

Cache hit
Cache miss

Figure 14: Prime+Probe histogram (C906) for cache hits
(dotted blue) and cache misses (solid red) via eviction.

Evict+Reload. Figure 12 shows the access times to an
accessed (cached) and an evicted (uncached) cache line on
the C906. Figure 13 shows the the measurement on the U74.

Prime+Probe. Figure 14 shows the access times to an
accessed (cached) and an evicted (uncached) cache line on
the C906. Figure 15 shows the measurement on the U74.

TLB Eviction. Figure 16 shows a histogram for ac-
cesses to a memory location where the address is cached in
the TLB (hit) or requires a page-table walk (miss).

Flush+Fault Attack Trace

Figure 17 shows a timing trace of Flush+Fault on a
Square-and-Multiply RSA implementation. The values of
the key bits are distinguishable by a simple threshold.

20 40 60 80 100
0

2 · 105
4 · 105

Time [cycles]

O
bs

er
va

tio
ns

Cache hit
Cache miss

Figure 15: Prime+Probe histogram (U74) for cache hits
(dotted blue) and cache misses (solid red) via eviction.

0 20 40 60 80 100 120 140
0

500

1,000

Time [cycles]

O
bs

er
va

tio
ns

TLB hit
TLB miss

Figure 16: Histogram for TLB hits (dotted blue) and TLB
misses (solid red) enforced via TLB eviction on the C906.

0

100

200

Bit

M
in

Ti
m

e
[c

yc
le

s]

Figure 17: Flush+Fault: 20 RSA key bits (C906). ‘1’ bits
are above, ‘0’ bits below 100 cycles.

TABLE 5: Instruction latencies on the U74 and the C906
processor. Timings with ‘*’ indicate that the latency can
vary depending on the operands.

Instruction U74 C906

nop 0.5 1
mv 1 1
add 1 1
sub 1 1
subw 1 1
addi 1 1
addiw 1 1
addw 1 1
slt 1 1
slti 1 1
sltu 1 1
sltiu 1 1
lui 1 1
and 1 1
xor 1 1
or 1 1
andi 1 1
xori 1 1
ori 1 1
sll 1 1
srl 1 1
slli 1 1
slliw 1 1
sllw 1 1
srli 1 1
srliw 1 1
srlw 1 1
srai 1 1
sraiw 1 1
sra 1 1
sraw 1 1
fence 1 5
div 16 * 3

Instruction U74 C906

divu 14 * 3
divuw 7 * 3
divw 70 * 3
mul 1 4
mulh 1 4
mulhsu 1 4
mulhu 1 4
mulw 1 2
rem 15 * 3
remu 13 * 3
remuw 7 * 3
remw 69 * 3
fadd.s 2 3
fclass.s 1 3
fdiv.s 9 7
feq.s 1 3
c.add 1 1
c.addi 1 1
c.addiw 1 1
c.addw 1 1
c.and 1 1
c.andi 1 1
c.li 1 1
c.lui 1 1
c.mv 1 1
c.nop 0.5 1
c.or 1 1
c.slli 1 1
c.srai 1 1
c.srli 1 1
c.sub 1 1
c.subw 1 1
c.xor 1 1

Instruction Latencies

Table 5 illustrates the latencies of the RISC-V base
instruction set. To measure the latency of the instructions,
we repeat each instruction 1024 times in a fully-unrolled
loop written in assembly, i.e., there is no other instruction
in between. The operands are set to random values before
the measurement is started. We measure execution time
using the rdcycle instruction. Additionally, we measure
the constant overhead of the time measurement itself by
measuring an empty block. By subtracting the overhead
from the measurement and dividing the execution time by
1024, we infer the execution time of each instruction. We
consider this instruction to have a non-constant execution
time, if its timing differes over multiple runs. Simmilar
to x86 CPUs [23], this is the case for the division and
remainder instructions on the U74.

18

